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The development of the boundary layer accompanying the formation of a free 
surface at y' = 0, from the two-dimensional uniform shear flow u' = wy', is dis- 
cussed. The analysis shows that the surface velocity and surface position vary as 
the cube root of the distance downstream, while the mass-transfer coefficient 
varies inversely as the cube root of this distance. It is shown how these may 
be applied to the formation of capillary jets. 

1. Introduction 
The cardinal hydrodynamic feature in the formation of a new liquid surface 

when a liquid stream separates from a solid is the instantaneous removal of the 
wall shear-stress. Near the point where the surface is formed, at the large Rey- 
nolds numbers at  least, the shear stress must fall from some finite value, at a 
point slightly within the liquid, to zero at  the free surface. At the same time, the 
velocity of a fluid element on the surface increases from zero with distance 
downstream. In this paper we shall present a momentum- and mass-transfer 
analysis of the circumstances accompanying the formation of a free surface 
(at y' = 0) from the two-dimensional uniform shear flow, u' = wy', parallel to 
the 2'-axis. The flowis taken to be of infiniteextent in both the y'- and 2'-directions 
and gravitational and surface-tension forces are neglected. The liquid is assumed 
to be Newtonian with constant physical properties. Besides being the simplest 
case to analyze, this is also one of practical interest because it approximates 
the conditions in the formation of capillary jets and in some other flow systems 
for gas-liquid contacting. As one might expect from the absence of both a charac- 
teristic length and a characteristic velocity, the problem admits a similarity 
solution. The analysis shows that the surface velocity and surface position 
vary as the cube root of the distance downstream, while the local mass-transfer 
coefficient varies inversely as the cube root of this distance. 

The most closely related published work concerns the development of the 
boundary layer over a flat plate from the uniform shear flow, u' = U,+wy', 
parallel to the 2'-axis. In  a recent discussion of this problem, Ting (1960) pointed 
out that in the earlier investigations of Li (1955, 1956, 1957), Glauert (1957) 
and Murray (1961) the effect of the shear was obtained as a small perturbation. 
He then went on to solve the problem when the shear, wy', is the major effect 
and the uniform velocity U, can be treated as a perturbation. This is precisely 
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the condition in the present problem, i.e. U, = 0. The present problem is made 
somewhat more complicated however by the fact that the surface is free to 
change and its position must be calculated. There seems to be some controversy 
as to whether the viscous flow in the boundary layer over the flat plate induces 
a pressure in the inviscid flow outside of the boundary layer. The analyses of Li, 
Murray and Ting indicate that such a pressure is induced, but Glauert argued 
against the existence of an induced pressure. In  the present work it would seem 
that the free surface would preclude the existence of such a pressure (to the usual 
order of magnitude of boundary-layer analyses), a t  least when gravitational 
and surface-tension forces are neglected. 

Another closely related work is that of Scriven & Pigford (1959). Following a 
suggestion of Rideal & Sutherland (1952), they adapted Goldstein’s (1930,1933) 
boundary-layer analysis-for the joining of the two streams being shed from a 
flat plate of finite length placed in a uniform flow-to predict the change in 
surface velocity of a capillary jet issuing from an orifice. For their situation the 
initial velocity profile deviates from plug flow only in a narrow peripheral zone 
of the jet, and so any change in average jet velocity or radius is small. On the 
other hand, for a capillary jet issuing from a long needle in which parabolic flow 
is established, the relaxation of the shear from a large portion of the jet results in 
appreciable changes in average jet velocity and radius. 

Other papers have discussed the simultaneous development of momentum and 
concentration boundary layers when two different parallel streams in plug 
flow meet. See, for example, the works of Lock (1951) and Potter (1957). 

2. Momentum transfer 
Consider the flow situation sketched in figure 1. The two-dimensional, uniform 

shear flow, wy’, of a Newtonian liquid with constant physical properties is caused 
to leave the solid wall (y’ = 0) and contact an immiscible and inviscid medium. 
Surface-tension and gravitational forces will be neglected. At the high Reynolds 
numbers it seems likely that the effects of the sudden removal of the viscous shear 
stress a t  the wall are confined to a thin, but spatially growing region adjacent 
to the free surface. One would therefore anticipate that in this region derivatives 
with respect to y are much larger than derivatives with respect to x and the x- 
component of velocity is much larger than the y-component. If  the curvature 
of the free surface is small, then the development of the flow is described by the 
usual two-dimensional boundary-layer equations as derived in Goldstein ( 1938) : 

au ay -+- = 0, 
ax av 

au au a2u 
ax ay a y 2 *  

u-+v-  = y- 

We have omitted the derivative of the pressure in the x-momentum equation 
because along the free surface the pressure is ‘constant’, and since an order-of- 
magnitude analysis on the y-momentum equation shows the y-dependence of the 
pressure to be of second order, the pressure may be taken as constant everywhere. 
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For a more complete discussion of why the pressure does not appear in (3 ) ,  see 
the appendix. 

Near the free surface the component of the uniform shear in the x-direction 
can be approximated by w(<+ y cos 4) GOS # z w(<+ y), where 5 is the local dis- 
placement of the free surface. The x-component of the velocity will be written as 
u = w(  5 + y) + a. A little investigation shows that the problem permits a similarity 

FIGURE 1. Geometry of the flow system. 

solution if 6 and Q are of the form < = Cx) and Q = wAx*g(q), where 7 = By/x*. 
Two of the constants, A and B, may be chosen arbitrarily, but the third is deter- 
mined by the mathematical nature of the problem and must be consistent with 
the constraint of constant volumetric flow rate. It turns out to be convenient 
to choose the constants so that 

< = P(3VX/W)*, (3) 

and 24 = (3VX02)+{P + 7 + 9(11)}, (4) 

where 7 = (wy3/3vx)*, ( 5 )  

and /3 = C / A  is a constant. Substituting these expressions into the continuity 
equation and then integrating with respect to y yields the following expression 
for the y-component of velocity: 

(6) 

When (a), ( 5 )  and (6) are substituted into the x-momentum equation it gives the 
following ordinary differential equation for g(q) : 

9” = cB+71+9}cB+g-Y9’)-(1+g’} (7) 
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Two boundary conditions for this equation derive from tile physical conditions 
that the viscous shear stress vanishes at  the free surface (y = 0 )  and the modifica- 
tion to the uniform shear velocity profile vanishes infinitely far from this surface. 
These take the form do)  = - 1, ( 8 )  

and g(o0) = 0. (9) 
In  addition, the constraint of constant volumetric flow rate must be satisfied. 
This condition is found by equating the flow (with velocity wy') lost due to the 

0 
change in surface position, namely 1 w(C+ y) dy, to the flow gained by the 

-5 

modification of the velocity profile, namely Gdy. In terms of the similarity 

function g(7) the restriction can be written as 
/om 

fa, 

It can be shown that the same requirement is needed for the boundary-layer 
solution to satisfy Euler's equation with zero pressure gradient infinitely far 
from the free surface. 

The method we have used to solve this problem is that of Meksyn (1961). 
We fist seek a power-series representation for g(7). The boundary condition 
at infinity is then expressed in terms of definite integrals which are evaluated 
by the method of steepest descent. If  we denote by a the value of g at 7 = 0, then 
the value of the second derivative at 7 = 0 may be found from ( 7 ) .  Thus we see 

g(0) = a, g'(0) = - 1, and g"(0) = (a+/l)2. (11)  
The third derivative is found by differentiating (7), giving 

grrr = - g" { 2/37 + 7 2  + 3 10" g d7)  , (12) 

and we see g"(0) = 0. (13) 

The values of the higher derivatives are found by successive differentiation. In  

(14) i 
this way we find giV(0) = -2(a+p)3, gV(0) = 0, 

g y o )  = 0, gT-yo) = 10(a+p)4, 

gviii(0) = -56(a+/3)5, g=(O) = 0, .... 
Thus g(7) is given by the power series 

+ .... (15) 
+---- lo(@ +p)476 5 6 ( ~  + p ) 5 7 8  

6! 8! 

We evaluate the constants a and p in the following way. With the known value 
of g"(O), (12) can be integrated formally t o  give 

g" = (a + ,8)2 e-"?), (16) 

where (17)  
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When the power-series expansion for g(7) is substituted into (17) and the indi- 
cated integrations are performed, the following series expression for G(7) is 

2 4 20 112 obtained : 
G ( r )  = 5 2 + 3  : 4 - 3 c + 3  5 8 - 5  51°+ ... 7 

where 5 = (a+p)+?]. (19) 

Two successive integrations of (16) from 9 = 0 to 7 give 

g ( 7 )  = (a  - (a  + p ) z I s s  0 7 e - ~ c i T ]  - 7( 1 - (a  +p)z/' 0 e - ~ c i q ) ,  (20) 

in which integration by parts has been used to simplify the result. The motivation 
here is that G(7) is a rapidly increasing function of 7 so that e-G is a rapidly de- 
creasing function and contributions to integrals such as in (20) come only from 
the region of small 7 where the power-series representation (18) is known and 
accurate. Another integration of (20) followed by some rearrangement gives 

1 - (a  +P)z / :  e - ~ d y ] .  (21) 

A comparison of this equation with (10) shows that in order for the constraint 
of constant volumetric flow rate to be satisfied we must have 

It will be noted that these relations also satisfy the condition that g(o0) = 0. 
See equation (20). At first it appears that the system of three equations for two 
unknowns is overdetermined. The equations will have a non-contradictory 
solution only if the relation ( I  - J)2 = I K  holds. The validity of this relation 
is confirmed by the numerica,l values of the integrals. Its validity probably could 
be established by analytical means, but this has not been done. 

Numerical evaluation of the integrals is accomplished by the method of 
steepest descent. To consider the integral K ,  for example, we first change the 
variable of integration from 5 to G: 

Inverting the series expansion for (2, (18), we find 

5 = G*(l -  0.041667G + 0-0088542G2 - 0*0024833G3 + 0*00078574G4.. .>, (24) 



92 Simon. L. Goren 

and when this is substituted into (23) we obtain 

00 

h' ='s ~ - ~ G ~ { 1 - 0 ~ 2 0 8 3 3 G + 0 ~ 0 7 4 1 3 2 G 2 - 0 ~ 0 2 9 2 0 7 G 3 + 0 ~ 0 l 1 9 5 1 G 4 -  ...} dG. 
2 0  

( 2 5 )  

The integral is evaluated term by term. The series obtainedis foundnot to be con- 
verging (as indicated by the first five terms) which reflects the fact that the series 
for g(7) has a finite radius of convergence. To convert this series to a convergent 
one the Euler transformation (see Meksyn 1961) is applied to the terms from 
three onwards. A second Euler transformation is then applied to the terms from 
five onwards. This is indicated in the following scheme: 

K = &&T(l- 0.31250 + 0.27799 - 0.38334 + 0.70585 - . . .} 
= ~.J7~{1-0~31250+0~13900-0~02634+0~02715- ...> 
= ~~7~{1-0~31250+0~13900-0*02634+0~01628-  ...> 
= &&I x 0.808 = 0.358. (2fv 

The value adopted is the average of the fourth and fifth approximations because 
in view of the alternating signs it is thought to give a slightly better approxima- 
tion. A similar treatment of the integrals I and J gives 

and 

I = $47~ x 0.956 = 0.847, 

J = 4 x 0.888 = 0.444. 

We are now in a position to certify the relation ( I  - J)2 = IK.  By inserting 
the above values we find ( I  - J)2/IK to be 1.02, which confirms the relation and 
implies that the numerical values are accurate to about 2 %. With these values 
of the integrals, the constants 01 and B are easily computed and are found to be 
0.491 and 0.615 respectively. Thus, the surface position and surface velocity are 
given by the formulae 

(28) 1 5 = 0*615(311~/0)), 

and uBuri = 1 * 1 0 6 ( 3 ~ ~ ~ ~ ) 9 .  

The modification to the uniform shear velocity profile can now be calculated 
from (15) for small y or from (20) for large y. 

3. Mass transfer 
Newly formed liquid surfaces are frequently encountered under conditions 

where there is transfer of a chemical species (or heat) from a gas phase to a liquid 
phase. It is therefore of interest to carry out the calculation for the rate of mass 
transfer in the present flow system. We have examined the situation for which 
the liquid is initially devoid of a chemical species and there is no resistance 
to transfer in the gas phase, i.e. the surface is maintained a t  a fixed concentra- 
tion c,. With the boundary-layer approximations the equation for the con- 
servation of the species reads 
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and the boundary conditions are 

and 

at y = 0, c = c, 

a t  y=cc or x = O ,  c = O .  

93 

If the concentration profile is of the form c = c,h(q) and if this and the velocities 
obtained in the previous section are substituted into the conservation equation, 
the following ordinary differential equation for h(7) is obtained: 

where Sc  = v / D  is the Schmidt number. The boundary conditions become 

h(0) = 1 ,  h(m) = 0.  (32 )  

Equation (31)  is easily solved subject to the conditions in (32)  and the result is 

To calculate the local mass-transfer coefficient we compute the flux of species 
through the surface by molecular diffusion and equate this to the product of the 
mass-transfer coefficient and the concentration driving force. 

The average mass-transfer coefficient is found by integration: 

The only remaining task is to evaluate the integral in these 
is accomplished as above by the method of steepest descent with the result that 

- 

(35)  

expressions. This 

+ sc2 sc3  + sc4  - ...). (36 )  
0.033203 0.032593 0.046408 - 

For Schmidt numbers greater than unity the integral is closely approximated 
by + Jn(a+p)-*Sc-~. Even at  Sc = 1 this approximation overestimates the 
integral only by about 5 yo. With this approximation the mass-transfer co- 

k = ~ . ~ ~ D X C * ( W / ~ V X ) *  efficients become 

and kavg = 1.790 X C ~ ( W / ~ U X ) ) .  ( 37 )  

4. Application to capillary jets 
The results derived above are applicable to newly formed capillary jets for 

small axial distances provided the interaction of the boundary layer with the 
core region of the jet, where the initial velocity profile is not one of uniform shear, 
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is negligible. For a jet of average velocity Go issuing from a long needle of radius 
a, with parabolic flow, the shear rate at  the wall is 4iZ,/a,. Taking w = 4z,/ao 
we find that (28) and (37)  give the following expressions for the initial change 
in jet radius, the surface velocity, and the average mass-transfer coefficient: 

where 

c/ao = 0.703(x/a0Re)&, 

usurr/W, = 5*07(x/a,Re)*, 

Re = 2aoZo/v. 

kavgao/D = l . 56Sc~(x /a0Re) -~~ ,  

In  another paper, Goren & Wronski (1966) reported measurements of the radius 
of capillary jets as a function of axial distance. For their highest Reynolds 
numbers, about 200, the measurements confirmed the cube-root dependence on 
the axis distance, but the observed coefficient was lower than the predicted one 
by about a factor of 2. Whether the discrepancy between the theory and experi- 
ment is due to the smallness of the Reynolds number or to the interaction of the 
peripheral boundary layer and the core is, at present, unknown. 

Appendix : The momentum equation 
Take the x and y components of velocity as w ( c +  y ) + &  and 8 respectively, 

and assume the boundary-layer quantities are functions of y/6 and x/L,  where 
6 is a measure of the boundary-layer thickness, L is a measure of the distance 
downstream, and 6/L < 1. The boundary condition that the shear stress vanishes 
at  the free surface requires that the order of magnitude of Q be US, while the 
continuity equation requires that the order of magnitude of 8 be oS2/L. To the 
usual boundary-layer order-of-magnitude estimates, the y-momentum equation 

where d2@ix2 is the curvature of the free surface and g is the acceleration of 
gravity. Integrating this equation gives 

The value of the pressure at the surface, psmf, is found from the boundary con- 
dition that the change in normal stress there is due to the surface tension and the 
curvature, namely 

Equation (40) becomes 

or upon differentiation 
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When (43) is substituted into the x-momentum equation and the usual boundary- 
layer order-of-magnitude estimates are made, the first two terms on the right- 
hand side of (43) are seen to be negligible with respect to the term va2u/ay2. The 
x-momentum equation may then be written as 

For the inertial and viscous terms to be of the same order of magnitude within 
the boundary layer we must have 6/L N (wL2/v)-* and the boundary-layer treat- 
ment is valid only if wL2/v $ 1. The magnitude of the ratio of the surface-tension 
term to the inertial term is ( (~ /pw*v%)  (wL2/v)G; the magnitude of the ratio of the 
gravitational term to the inertial term is (g/w”$) (wL2/v)-*. For the flow of a 
liquid of moderate viscosity (v = 0.1 cm2/sec) at a high rate of shear (o = 104sec-l), 
6/L = 0.1 a t  L = 0.1 em. Furthermore, with (T = 30dyne/cm and p = 1 g/cm3, 
( r /pw* v8) (w.L2/v)fz3 x and ( g / w b & )  (wL21v)-*z 10-3. It would appear that 
the surface-tension and gravitational forces might be neglected and that the 
boundary-layer approximations would be valid for distances downstream greater 
than about 0.1 cm. 
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